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Abstract

Some of the current best conformant probabilistic planners focus on finding a fixed length
plan with maximal probability. While these approaches can find optimal solutions, they of-
ten do not scale for large problems or plan lengths. As has been shown in classical planning,
heuristic search outperforms bounded length search (especially when an appropriate plan
length is not given a priori). The problem with applying heuristic search in probabilistic
planning is that effective heuristics are as yet lacking.

In this work, we apply heuristic search to conformant probabilistic planning by adapting
planning graph heuristics developed for non-deterministic planning. We evaluate a straight-
forward application of these planning graph techniques, which amounts to exactly comput-
ing a distribution over many relaxed planning graphs (one planning graph for each joint
outcome of uncertain actions at each time step). Computing this distribution is costly, so
we apply Sequential Monte Carlo (SMC) to approximate it. One important issue that we
explore in this work is how to automatically determine the number of samples required
for effective heuristic computation. We empirically demonstrate on several domains how
our efficient, but sometimes suboptimal, approach enables our planner to solve much larger
problems than an existing optimal bounded length probabilistic planner and still find rea-
sonable quality solutions.
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1 Introduction

Agents that execute risky, fault-prone actions cannot always guarantee plan suc-
cess. In such cases, a viable alternative to abandoning their goals is to formulate
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high probability plans. With a probability distribution over the outcomes of their
actions, an agent can assess the probability a plan satisfies its goals. Conformant
probabilistic planning (CPP) is a special case where the agent cannot observe the
outcomes of their actions and must find an unconditional plan. Conditional proba-
bilistic planning allows the agent to observe action outcomes and execute different
sub-plans, conditioned on their observations.

Recent successes [12,7,22] in scaling-up non-deterministic conformant and con-
ditional planning have formulated the problem as heuristic search in belief state
space. Much of the improvements come from using novel reachability heuristics
based on planning graphs to guide the search. The heuristics estimate the distance
between a belief state (a set of states that are believed to be possible) and a goal
state. Using this work as a starting point, we address conformant probabilistic plan-
ning as heuristic search in belief state space for several reasons:

• despite long standing interest [30,35,25,26], probabilistic plan synthesis algo-
rithms have a terrible track record in terms of scalability,
• our search formulation is relatively straight-forward, allowing us to concentrate

on our contribution – heuristic search guidance,
• conformant planning heuristics (with little or no modification) have proven use-

ful in the, more general, conditional planning problem [12,22].

The current best conformant probabilistic planners are only able to handle very
small problems. This is in part due to their focus on finding optimal solutions (i.e.,
finding the maximal probability of satisfying the goal with a k length plan). In con-
trast, there has been steady progress in scaling deterministic planning by finding
sub-optimal, but feasible plans (i.e., satisfying the goal with a plan whose length is
not necessarily minimal). Much of this progress has come from the use of sophis-
ticated reachability heuristics. In this work, we show how to effectively use reach-
ability heuristics [11] to solve conformant probabilistic planning problems (where
a minimum probability of goal satisfaction is guaranteed, but the plan length is
not necessarily minimal). We use our previous work on planning graph heuristics
for non-deterministic planning [12] as our starting point. While we do not dis-
cuss conditional planning in this work, our previous work on heuristics for non-
deterministic planning [12] and initial results for conditional probabilistic planning
[10,9] indicate this work is relevant to conditional probabilistic planning.

We investigate an extension of our work [12] that uses a planning graph generaliza-
tion called the Labeled uncertainty graph (LUG). The LUG is used to symbolically
represent a set of relaxed planning graphs (much like the planning graphs used by
Conformant GraphPlan, [44]), where each is associated with a possible world state.
By analyzing the set of planning graphs, we compute a heuristic estimate of the
cost to transition all possible current states to a goal state. The LUG (as described
in [12]) handles only uncertainty about the initial state. In this work, we extend the
LUG to consider action uncertainty and probabilistic uncertainty (i.e., probability
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distributions instead of sets of possibilities). This extension involves symbolically
representing how at each level CGP explicitly splits the planning graph over all
joint outcomes of uncertain actions to capture the resulting possible worlds and
assigning probabilities to the possible worlds.

A possible world is a set of possible outcomes to all uncertain events (i.e., one
starting state and one outcome for each action at each level of the planning graph).
The number of possible worlds grows exponentially with the number of levels in
the planning graph because in each level an action can have a different outcome.
However, because the planning graph is a relaxation of the planning problem it
represents the propositions reachable if all actions per level are executed in parallel
and do not conflict. Therefore each possible world captures a joint set of action
outcomes per level. CGP represents the set of planning graphs like a tree, where
each path corresponds to a possible world. Two possible worlds may have partially
overlapping paths in this tree, meaning they share the same action outcomes and
start state up to the point that they diverge.

Without uncertain actions, CGP and the LUG represent an exponential 1 (yet, con-
stant) number of possible worlds at each time step. The possible worlds are only
attributed to state uncertainty, and deterministic actions keep their number constant.
With uncertain actions, an explicit or symbolic representation of planning graphs
is exactly representing an exponentially increasing set of possible worlds (corre-
sponding to uncertainty in the source state and each action level). Since we are
only interested in planning graphs to compute heuristics, it is both impractical and
unnecessary to exactly represent all of the possible worlds. The key contribution of
this work is to use approximate methods for representing the possible worlds. Since
we are applying planning graphs in a probabilistic setting, we can use Monte Carlo
techniques to construct planning graphs.

There are a wealth of methods, that fall under the name sequential Monte Carlo
(SMC) [17] for reasoning about a hidden random variable over time. SMC applied
to “on-line” Bayesian filtering is often called particle filtering, however we use
SMC for “off-line” prediction. The idea behind SMC is to represent a probability
distribution as a set of samples (particles), which evolve over time by sampling a
transition function. In our application, each particle is a possible world in a confor-
mant planning graph (i.e., a particle is a simulated deterministic planning graph).
Using particles is much cheaper than splitting over all joint outcomes of uncertain
actions to represent the true distribution over possible worlds in the planning graph.
By using more particles, we capture more possible worlds, exploiting the natural
affinity between SMC approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs (each a particle), but their
number is fixed. We could represent each planning graph explicitly, but they may

1 Exponential in the number of unknown propositions.
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have considerable redundant structure. Instead, in our first contribution we gener-
alize the LUG to symbolically represent the set of planning graph particles in a
planning graph we call the Monte Carlo LUG (McLUG) [13]. We show that by us-
ing theMcLUG to extract a relaxed plan heuristic we are able to find much higher
probability plans than one of the current best conformant probabilistic planners CP-
plan [26,25] in a number of domains. In the problems that both can solve (i.e., those
that have the same minimum probability of goal satisfaction), our approach finds
comparable quality plans to the optimal plans found by CPplan.

A natural question that accompanies most SMC approaches is deciding how many
samples to use. In this article, we build upon our initial work on theMcLUG[13]
to answer this issue. As we will demonstrate, each planning problem is solved best
with a different number of samples in eachMcLUG. In order to support the ideal of
domain-independent planning, we present a technique to automatically determine
the number of samples. The automated technique, which relies on existing research
[19] on particle filters, outperforms the best manually selected number of particles
across many domains.

Our presentation starts by describing the relevant background on planning graph
heuristics, CPP, and SMC. We follow with a running example of how to construct
planning graphs that exactly compute the probability distribution over possible
worlds versus using SMC, as well as how one would symbolically represent plan-
ning graph particles. After the intuitive example, we cover the details ofMcLUG,
and the associated relaxed plan heuristic, which appeared in [13]. We then describe
a new contribution that automatically determines the number of samples. Finally,
we present an empirical analysis of our techniques by comparing with CPplan, and
analyze the effect of using a different number of particles.We finish with a discus-
sion of related work, and conclusions.

2 Background & Representation

In this section we give a brief introduction to planning graph heuristics for classi-
cal planning, and then describe our action and belief state representation, the CPP
problem, the semantics of conformant probabilistic plans, our search algorithm,
and sequential Monte Carlo.

2.1 Classical Planning Graph Heuristics

This section describes the foundations of planning graph heuristics used in classical
planning. We start by formally discussing the classical planning problem, follow
with a description of the most common heuristic search formulation (forward state
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space search), and finish with how to derive search heuristics from planning graphs.

Classical Planning: The classical planning problem is defined as a tuple (P,A, I,G),
where P is a set of propositions, A is a set of actions, I is a set of initial state
propositions, and G is a set of goal propositions. This description of classical plan-
ning uses many representational assumptions (described below) consistent with the
STRIPS language [18]. While STRIPS is only one of many choices for action rep-
resentation, it is very simple and most other action languages can be compiled down
to STRIPS [37]. In STRIPS a state s is a proper subset of the propositions P , where
every proposition p ∈ s is said to be true (or to hold) in the state s. Any proposi-
tion p �∈ s is false in s. The initial state sI is specified by a set of propositions
I ⊆ P known to be true (the false propositions are inferred by the closed world
assumption) and the goal is a set of propositions G ⊆ P that must be made true
in a state s for s to be a goal state. Each action a ∈ A is described by the pair
(ρe(a), (ε+(a), ε−(a))), where ρe(a) is a set of propositions for execution precon-
ditions, and (ε+(a), ε−(a)) is an effect where ε+(a) describes a set of propositions
that it causes to become true and ε−(a) is a set of propositions it causes to become
false. An action a is applicable appl(a, s) to a state s if each precondition proposi-
tion holds in the state, ρe(a) ⊆ s. The successor state s′ is the result of executing
an applicable action a in state s, where s′ = exec(a, s) = s\ε−(a) ∪ ε+(a). A
sequence of actions {a1, ..., am}, executed in state s, results in a state s′, where
s′ = exec(am, exec(am−1, ... exec(a1, s) ...)) and each action is executable in the
appropriate state. We will assume that a valid plan is a sequence of actions that can
be executed from sI and results in a goal state. 2 The number of actions m in the
sequence is the length of the plan.

Forward State Space Search: Classical planning can be viewed as finding a path
from an initial state to a goal state in a state transition graph. This view suggests a
simple algorithm that constructs the state transition graph and uses a shortest path
algorithm to find a plan in O(n log n) time. However, practical problems have a
very large number of states n. In many problems there are hundreds of propositions
P , leading to an extremely large number of states n = 2|P |, which makes the above
algorithm impractical.

Instead of an explicit graph representation, it is possible to use a search algorithm
and the propositional representation to construct regions of the state transition
graph, as needed. However, in the worst case, it is possible to still construct the
entire transition graph. Heuristic search algorithms, such as A* search, can “intelli-
gently” search for plans and hopefully avoid visiting large regions of the transition
graph. The critical concern of such heuristic search algorithms is the design of a
good heuristic.

2 Plans can in theory contain parallel actions.
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To illustrate heuristic search for plans, consider the most popular search formu-
lation, progression (a.k.a. forward-chaining). The search creates a projection tree
rooted at the initial state sI by applying actions to leaf nodes (representing states)
to generate child nodes. Each path from the root to a leaf node corresponds to a plan
prefix, and expanding a leaf node generates all single step extensions of the prefix.
A heuristic estimates the “goodness” of each leaf node, and in classical planning
this can be done by estimating the cost to reach a goal state. With the heuristic
estimate, search can focus effort on expanding the most promising leaf nodes.

Planning Graph Heuristics: One way to compute exact reachability information
is to compute the full projection tree rooted at the initial state. Within this tree, the
exact reachability cost for each node is the minimal length path to reach a state
satisfying the goal. Computing exact reachability information is impractical as it is
no cheaper than the cost of solving the original problem! Instead, research on clas-
sical planning explores more efficient ways of computing reachability information
approximately; one of the better ways is through planning graph analysis.

Planning Graphs: We start by formalizing planning graphs and follow with a plan-
ning graph based reachability heuristic (called a relaxed plan). The planning graph
is a layered graph structure with alternating action and proposition layers. There
are edges between layers: an action has its preconditions in the previous layer and
its positive effects in the next layer. Unlike the projection tree, the planning graph
structure can be computed in polynomial time. The planning graph can be viewed
as the exact projection tree for a relaxation of the domain that ignores the interac-
tions between and within action effects during graph expansion.

Traditionally, progression search uses a different planning graph to compute the
reachability heuristic for each state s. A planning graph PG(s, A), constructed for
the state s (referred to as the projected state) and the action set A is a leveled graph,
captured by layers of vertices (P0(s),A0(s), P1(s),A1(s), ..., Ak(s),Pk+1(s)),
where each level i consists of a proposition layer Pi(s) and an action layer Ai(s).
In the following, we simplify the notation for a planning graph to PG(s), assuming
that the entire set of actions A is always used. The notation for action layersAi and
proposition layers Pi also assumes that the state s is implicit.

The first proposition layer, P0, is defined as the set of propositions in the state s.
An action layer Ai consists of all actions that have all of their precondition propo-
sitions in Pi. A proposition layer Pi, i > 0, is the set of all propositions given
by the positive effect 3 of an action in Ai−1. It is common to use implicit actions

3 The reason that actions do not contribute their negative effects to proposition layers
(which contain only positive propositions) is a syntactic convenience of using STRIPS.
Since action preconditions and the goal are defined only by positive propositions, it is not
necessary to reason about reachable negative propositions. In general, action languages
(such as ADL [40]) allow negative propositions in preconditions and goals, requiring the
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RPExtract(PG(s), G)

1: Let k be the index of the last level of PG(s)
2: for all p ∈ G ∩ Pk do {Initialize Goals}
3: PRP

k ← PRP
k ∪ p

4: end for
5: for i = k...1 do
6: for all p ∈ PRP

i do {Find Supporting Actions}
7: Find a ∈ Ai−1 such that p ∈ ε+(a)
8: ARP

i−1 ← ARP
i−1 ∪ a

9: end for
10: for all a ∈ ARP

i−1, p ∈ ρe(a) do {Insert Preconditions}
11: PRP

i−1 ← PRP
i−1 ∪ p

12: end for
13: end for
14: return (PRP

0 ,ARP
0 ,PRP

1 , ...,ARP
k−1,PRP

k )

Fig. 1. Relaxed Plan Extraction Algorithm.

for proposition persistence (a.k.a. noop actions) to ensure that propositions in Pi−1

persist to Pi. A noop action ap for proposition p is defined as ρe(ap) = ε+(ap) = p.
Planning graph construction can terminate when the goal is reachable (i.e., every
goal proposition is present in a proposition layer).

Relaxed Plans: Planning graph heuristics are used to estimate the plan cost to
transition between two states, a source and a destination state. The source state is
always the state that defines P0, and the destination state is one of potentially many
goal states. Heuristics typically do not distinguish between the goal states, comput-
ing the cost to achieve the goal propositions. One way to do this is to compute a
relaxed plan.

Relaxed plans identify the actions needed to causally support all goals (while ig-
noring conflicting actions). Through a simple back-chaining algorithm (Figure 1)
called relaxed plan extraction, it is possible to identify the actions in each level
that are needed to support the goals or other actions. Relaxed plans are subgraphs
(PRP

0 ,ARP
0 ,PRP

1 , ...,ARP
n−1,PRP

n ) of the planning graph, where each layer corre-
sponds to a set of vertices. A relaxed plan satisfies the following properties: (i)
every proposition p ∈ PRP

i , i > 0, in the relaxed plan is supported by an action
a ∈ ARP

i−1 in the relaxed plan, and (ii) every action a ∈ ARP
i in the relaxed plan

has its preconditions ρe(a) ⊆ PRP
i in the relaxed plan. A relaxed plan captures

the causal chains involved in supporting the goals, but ignores how actions may
conflict.

planning graph to maintain “literal” layers that record all reachable values of propositions
[29].
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Figure 1 lists the algorithm used to extract relaxed plans. Lines 2-4 initialize the re-
laxed plan with the goal propositions. Lines 5-13 are the main extraction algorithm
that starts at the last level of the planning graph n and proceeds to level 1. Lines 6-9
find an action to support each proposition in a level. Line 7 is the most critical step
in the algorithm where we select actions. It is common to prefer noop actions for
supporting a proposition (if possible) because the relaxed plan is likely to include
fewer extraneous actions. For instance, a proposition may support actions in multi-
ple levels of the relaxed plan; by supporting the proposition at the earliest possible
level, it can persist to later levels. It is also possible to select actions based on other
criterion, such as probability, which we will describe later. Lines 10-12 insert the
preconditions of chosen actions into the relaxed plan. The algorithm ends by re-
turning the relaxed plan, which is used to compute the heuristic as the total number
of non noop actions in the action layers.

2.2 Conformant Probabilistic Planning

The conformant probabilistic planning problem generalizes the classical planning
problem in several ways: there is a probability distribution over initial states, there
is a probability distribution over the outcomes of each action, and the goal may be
satisfied with less than 1.0 probability. A conformant probabilistic planning prob-
lem is given by the tuple CPP = (P,A, bI , G, τ), where P is a set of propositions,
A is a set of actions, bI is an initial belief state (probability distribution over initial
states), G is the goal description (a conjunctive set of propositions), and τ is a goal
probability satisfaction threshold (0 < τ ≤ 1).

Belief States: A belief state is a probability distribution over all states (or equiva-
lently, the power set of propositions). The probability of a state s in a belief state
b is denoted b(s). We say that a state s is in b (s ∈ b) if b(s) > 0. The marginal
probability of a set of propositions Pt ⊆ P that hold and a set of propositions
Pf ⊆ P (Pt ∩ Pf = ∅) that do not hold, is denoted b(Pt, Pf ), and computed as
b(Pt, Pf ) =

∑
s∈b:Pt⊆s,Pf∩s=∅ b(s).

Actions: An action a is a tuple (ρe(a), Φ(a)), where ρe(a) is an enabling precondi-
tion, and Φ(a) is a set of outcomes. The enabling precondition ρe(a) is a conjunc-
tive set of propositions that determines action applicability. An action a is appli-
cable appl(a, b) in belief state b if it is applicable in each state in the belief state,
∀s∈bρe(a) ⊆ s. The causative outcomes Φ(a) are a set of tuples (wi(a), Φi(a))
representing possible outcomes (indexed by i), where wi(a) is the probability of
outcome i being realized, and Φi(a) is a mutually-exclusive and exhaustive set of
conditional effects (indexed by j). Each conditional effect ϕij(a) ∈ Φi(a) is of the
form ρij(a)→ (ε+

ij(a), ε−ij(a)), where both the antecedent (secondary precondition)
ρij(a) and positive ε+

ij(a) and negative ε−ij(a) consequents are conjunctive sets of
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propositions. This representation of effects follows the 1ND normal form presented
by Rintanen [43]. As outlined in the probabilistic PDDL (PPDDL) standard [47],
it is possible to use the effects of every action to derive a state transition function
T (s, a, s′) that defines a probability that executing a in state s will result in state s′.
Executing action a in state s will result in a single state s′ for each outcome Φi(a):

s′ = exec(Φi(a), s) = s ∪
( ⋃

j:ρij(a)⊆s
ε+

ij(a)

)
\
( ⋃

j:ρij(a)⊆s
ε−ij(a)

)

The value for T (s, a, s′) is the sum of the weight of each outcome where s′ =
exec(Φi(a), s), such that:

T (s, a, s′) =
∑

i:s′=exec(Φi(a),s) wi(a)

Executing action a in belief state b, denoted exec(a, b) = ba, defines the successor
belief state such that ba(s

′) =
∑

s∈b b(s)T (s, a, s′).

A sequence of actions {a1, ..., am}, executed in belief state b, results in a state b′,
where b′ = exec(am, exec(am−1, ... exec(a1, b) ...)) and each action is executable
in the appropriate state. A valid conformant plan is a sequence of actions that can
be executed from bI and results in a belief state b′ where b′(G, ∅) ≥ τ . The number
of actions m in the sequence is the length of the plan.

Belief Space Search: Like our description of classical planning, we use a forward-
chaining weighted A* search to find solutions to CPP. The search graph is organized
using nodes to represent belief states (instead of states), and edges for actions. A
solution is a path in the search graph from bI to a terminal node. We define terminal
nodes as belief states where b(G, ∅) ≥ τ . The g-value of a node is the length
of the minimum length path to reach the node from bI . The f-value of a node is
g(b) + 5h(b), using a weight of 5 for the heuristic. 4 In the remainder of the paper
we concentrate on the central issue of how to compute h(b) using an extension of
planning graph heuristics to CPP.

2.3 Sequential Monte Carlo

In many scientific disciplines it is necessary to track the distribution over values
of a random variable X over time. This problem can be stated as a first-order sta-
tionary Markov process with an initial distribution Pr(X0) and transition equation

4 Since our heuristic turns out to be inadmissible, the heuristic weight has no further bear-
ing on admissibility. In practice, using five as a heuristic weight tends to improve search
performance.
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Pr(Xk|Xk−1). It is possible to compute the probability distribution over the val-
ues of X after k steps as Pr(Xk) =

∫
Pr(Xk|Xk−1)Pr(Xk−1)dXk−1. In general,

Pr(Xk) can be very difficult to compute exactly, even when it is a discrete distri-
bution (as in our scenario).

We can approximate Pr(Xk) as a set of N particles {xn
k}N−1

n=0 , where the probability
that Xk takes value xk,

Pr(Xk = xk) ≈ |{x
n
k |xn

k=xk}|
N

is the proportion of particles taking on value xk. At time k = 0, the set of par-
ticles is drawn from the initial distribution Pr(X0). At each time step k > 0,
we simulate each particle from time k − 1 by sampling the transition equation
xn

k ∼ Pr(Xk|xn
k−1). In our application of SMC to approximate conformant plan-

ning graphs, particles represent possible worlds (deterministic planning graphs),
where at any time step the value of a particle denotes a specific joint outcome
of uncertain events (e.g., an initial state and joint action outcomes for each time
step). Our stochastic transition equation resembles the Conformant GraphPlan [44]
construction semantics (i.e., modeling the probability of achieving one proposition
layer from another, given the applicable actions).

We would like to point out that our use of SMC is inspired by, but different from
the standard particle filter. The difference is that we are using SMC for prediction
and not on-line filtering. We do not filter observations to weight our particles for
re-sampling. Particles are assumed to be unit weight throughout simulation.

3 Monte Carlo Planning Graph Construction

We start with an example to give the intuition for Monte Carlo simulation in plan-
ning graph construction. Consider a simple logistics domain where we wish to load
a freight package into a truck and loading works probabilistically (because rain is
making things slippery). There are two possible locations where we could pick up
the package, but we are unsure of which location. There are three propositions,
P = { atP1, atP2, inP }, and our initial belief state bI has two states s0 = {atP1}
and s1 = {atP2} where bI(s0) = bI(s1) = 0.5, and the goal is G ={inP}. The
package is at location 1 (atP1) or location 2 (atP2) with equal probability, and is
definitely not in the truck (inP). Our actions are LP1 and LP2 to load the package at
locations 1 and 2, respectively. Both actions have an empty enabling precondition
{} (so they are always applicable) and have two outcomes. The first outcome, with
probability 0.8, loads the package if it is at the location, and the second outcome,
with probability 0.2, does nothing. We assume for the purpose of exposition that
driving between locations in not necessary. In the following, we provide a key to
our notation for action descriptions and the actual descriptions for the two actions:
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a = ( ρe(a),

Φ(a) = { . . . ,

(wi(a), Φi(a) = {. . . , ϕij(a) = (ρij(a), (ε+
ij(a), ε−ij(a))), . . .}),

. . .})

LP1 = ( {},
{(0.8, {({atP1}, ({inP}, {}))}),
(0.2, {})}

LP2 = ( {},
{(0.8, {({atP2}, ({inP}, {}))}),
(0.2, {})}

Each action has two outcomes. The first outcome has a single conditional effect,
and the second has no effects.

Figures 2, 3, and 4 illustrate several approaches to planning graph based reachabil-
ity analysis for our simplified logistics domain. (We assume that we are evaluating
the heuristic value h(bI) of reaching G from our initial belief state.) The first is in
the spirit of Conformant GraphPlan, where uncertainty is handled by splitting the
planning graph layers for all outcomes of uncertain events. CGP creates a plan-
ning graph that resembles a tree, where each branch corresponds to a deterministic
planning graph.

CGP: In Figure 2, we see that there are two initial proposition layers (denoted by
propositions in boxes), one for each possible world at time zero. We denote the
uncertainty in the source belief state by X0, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in both possible worlds
because their enabling preconditions are always satisfied. The edges leaving the
actions denote the probabilistic outcomes (each a set of conditional effects). While
it is possible for any outcome of an action to occur, the effects of the outcome may
not have their secondary precondition supported. In world s0, if outcome Φ0(LP1)
occurs, then effect ϕ00(LP1) is enabled and will occur, however even if Φ0(LP2)
occurs ϕ00(LP2) is not enabled and will not occur.

The set of possible worlds at time one is determined by the cross product of ac-
tion outcomes in each world at time zero and the possible worlds at time zero.
For instance, the possible world s0, {Φ0(LP1), Φ0(LP2)} is formed from world
s0 when outcomes Φ0(LP1) and Φ0(LP2) co-occur in s0. Likewise, possible world
s1, {Φ1(LP1), Φ0(LP2)} is formed from possible world s1 when outcomes Φ1(LP1)
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LP1

LP2

00(LP1)

atP1

00(LP2)
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atP2
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atP2
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atP2

s0,{ 0(LP1), 
0(LP2)}

s0,{ 0(LP1), 
1(LP2)}

s0,{ 1(LP1), 
0(LP2)}

s0,{ 1(LP1), 
1(LP2)}

s1,{ 0(LP1), 
0(LP2)}

s1,{ 0(LP1), 
1(LP2)}

s1,{ 1(LP1), 
0(LP2)}

s1,{ 1(LP1), 
1(LP2)}

s0
0.5

s1
0.5

0(LP1)
1(LP1)

0(LP2)

1(LP2)

LP1

LP2

00(LP1)

00(LP2)

0.8

0.2

0.8

0.2

0(LP1)
1(LP1)

0(LP2)

1(LP2)

A0 P1P0 E0

Fig. 2. CGP representation.

and Φ0(LP2) occur in s1.

In our example, CGP could determine the exact distribution over possible worlds
at time one (i.e., Pr(X0:1)). Because each time step k introduces a new random
variable Xk to capture joint action outcomes, the probability distribution Pr(X0:k)
over level k proposition layers is exponentially larger than the previous level.

Figure 2 identifies that the goal is satisfied in half of the possible worlds at time 1,
with a total probability of 0.8. It is possible to back-chain on this graph as done in
CGP, to extract a relaxed plan that satisfies the goal with 0.8 probability. We choose
actions needed to support the goal in each possible world and prefer actions already
chosen for other possible worlds. The resulting actions form the basis for heuristic
computation, described in more detail later.

McCGP: Next, we illustrate a Monte Carlo simulation approach we call Monte
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Fig. 3. McCGP representation.

Carlo CGP (McCGP), in Figure 3. The idea is to represent a set of N determinis-
tic planning graphs as particles. In our example, suppose we sample N = 4 states
from bI , denoted {xn

0}N−1
n=0 ∼ Pr(X0), where Pr(X0) = bI , and create an initial

proposition layer for each. The first two samples correspond to s0 and the second
two correspond to s1. To simulate a particle we first insert the applicable actions
into A0. We then insert effects into E0 by sampling from the distribution of joint
action outcomes (i.e. xn

k ∼ Pr(Xk|xn
k−1)). The first particle x0 samples outcomes

Φ0(LP1) and Φ1(LP2), identifying the effects that construct the subsequent propo-
sition layer. Note that by sampling the action outcomes, each particle is a determin-
istic planning graph.

While it may seem strange to sample the outcomes of several actions at each time
step, where in a particle filter only one action occurs at each time step, we must
capture the relaxed semantics of the planning graph. That is, several actions execute
in parallel at each time step, and we assume they do not conflict. Despite executing
actions in parallel, we must sample each action outcome independently because
their outcomes are independent. Thus, simulating each particle xn

k ∼ Pr(Xk|xn
k−1)

involves sampling each action outcome.

In our example, the simulation was lucky and the proposition layer for each particle
at time 1 satisfies the goal. We may think the best one step plan achieves the goal
with certainty. From each of these graphs it is possible to extract a relaxed plan,
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Fig. 4.McLUG representation.

which can then be aggregated to give a heuristic as described by Bryce, et. al.
[12]. We can union the sets of actions appearing in each level of the relaxed plans.
For example, if we use LP1 in the zeroth level of two relaxed plans, the unioned
relaxed plan will have LP1 once in its zeroth action layer. Unioning the action layers
step-by-step captures how actions can be used once to satisfy the goal in multiple
possible worlds (similar to how CGP prefers to reuse actions from other possible
worlds).

While McCGP improves memory consumption by bounding the number of possible
worlds, it still wastes quite a bit of memory. Many of the proposition layers in the
resulting planning graphs are identical. Symbolic techniques can help us compactly
represent the set of planning graph particles.

McLUG: Using our ideas from Bryce, et. al. [12] , we can represent a single propo-
sition layer at every time step for all particles in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 4. We associate a label with each proposition,
action, and effect instead of generating multiple copies. The idea is to union the
connectivity of multiple planning graphs into a single planning graph skeleton, and
use labels on the actions and propositions to signify the original, explicit planning
graphs in which an action or proposition belongs. The contribution in theMcLUG
is to represent a set of particles symbolically and provide a relaxed plan extraction
procedure that takes advantage of the symbolic representation. In the following
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section we work through the example in Figure 4 and provide definitions needed to
construct aMcLUG.

4 Symbolic Planning Graph Representation

In our previous work [12] we describe a planning graph generalization called the
Labeled Uncertainty Graph (LUG). In non-deterministic conformant planning, the
LUG symbolically represents the exponential number of planning graphs used by
Conformant GraphPlan [44]. In [12], we construct multiple planning graphs sym-
bolically by propagating “labels” over a single planning graph skeleton. The skele-
ton serves to represent the connectivity between actions and propositions in their
preconditions and effects. The labels on actions and propositions capture non-
determinism by indicating the outcomes of random events that support the actions
and propositions. In the problems that we consider in [12] there is only a single
random event X0 captured by labels because the actions are deterministic and only
the source state is uncertain. Where CGP would build a planning graph for each
possible state, the LUG uses labels to denote which of the explicit planning graphs
would contain a given proposition or action in a level. For instance, if CGP builds
a planning graph for possible worlds s1, ..., sn (each a state in a source belief state)
and the planning graphs for s1, ..., sm each have proposition p in level k, then the
LUG has p in level k labeled with a propositional formula �k(p) whose models are
{s1, ..., sm}. In the worst case, the random event X0 captured by the labels has 2|P |

outcomes (i.e., all states are possible in the belief state), characterized by a logical
formula over log2(2|P |) = |P | boolean variables.

We [12] expand the LUG until a level where all goal propositions are labeled with
all states in the source belief state, meaning the goal is strongly reachable 5 in the
relaxed plan space. We define a strong relaxed plan procedure that back-chains on
the LUG to support the goal propositions in all possible worlds. This relaxed plan
proves effective for search in both conformant and conditional non-deterministic
planning.

4.1 Exact Symbolic Representation

Despite the utility of the LUG, it has a major limitation in that it does not reason
with actions that have uncertain effects, an essential feature of probabilistic plan-
ning. We would like to complete the analogy between the LUG and CGP by sym-
bolically representing uncertain effects. However, as we argue, exactly representing
all possible worlds is still too costly even with symbolic techniques.

5 The goal is guaranteed to be reachable despite all uncertainty.
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We previously noted that the LUG symbolically represents Pr(X0) using boolean
function labels with |P | variables. When we have uncertain actions, the distribu-
tion Pr(X1) requires additional boolean variables. For example, if the action layer
contains |A| actions, each with m probabilistic outcomes, then we require an addi-
tional log2(m

|A|) = |A|log2(m) boolean variables (for a total of |P | + |A|log2(m)
boolean variables to exactly represent the distribution Pr(X0:1)). For the distribu-
tion Pr(X0:k), we need |P | + k|A|log2(m) boolean variables. In a reasonable size
domain, where |P | = 20, |A| = 30, and m = 2, a LUG with k = 3 steps could
require 20+(3)30log2(2) = 110 boolean variables, and for k = 5 it needs 170. Cur-
rently, a label function with this many boolean variables is feasible to construct, but
is too costly for use in heuristics. We implemented this approach (representing la-
bels as BDDs [45]) and it performed very poorly; in particular it ran out of memory
constructing the first planning graph for the p2-2-2 Logistics problem, described in
our empirical evaluation.

We could potentially compile all action uncertainty into initial state uncertainty to
alleviate the need for additional label variables. This technique, mentioned in [44],
involves making the uncertain outcome of each action conditional on a unique,
random, and unknown state variable for each possible time step the action can ex-
ecute. If each action has m outcomes, then the planning graph has k steps, and
the belief state has size |b| = |{s|s ∈ b}|, then the transformed belief state would
describe O(|b||A|mk) states. While this compilation would allow us to restrict the
growth of LUG labels, there is still a problem. We are solving indefinite horizon
planning problems, meaning that the number of possible time points for an action
to execute is unbounded (i.e., k is unknown). This further means that the size of
the compilation (for any large k) is unbounded. Consequently, we shift our focus to
approximating the distribution using particles.

4.2 Sampled Symbolic Representation (McLUG)

We describe how to construct aMcLUG, a symbolic version of McCGP that we
use to extract relaxed plan heuristics. There are noticeable similarities to the LUG,
but by using a fixed number of particles we avoid adding boolean variables to the
label function at each level of the planning graph. We implement labels as boolean
formulas, but find it convenient in this context to describe them as sets of parti-
cles (where each particle is in reality a model of a boolean formula). TheMcLUG
is constructed with respect to a belief state encountered in search which we call
the source belief state. The algorithm to construct the McLUG starts by form-
ing an initial proposition layer P0 and an inductive step to generate a graph level
{Ak, Ek,Pk} consisting of an action, effect, and proposition layer. We describe
each part of this procedure in detail, then follow with a description of relaxed plan
extraction, and how to select the number of particles.
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Initial Proposition Layer: The initial proposition layer P0 captures a set of N par-
ticles {xn

0}N−1
n=0 drawn from the source belief state. 6 Each particle xn

0 corresponds
to a state s ∈ b in the source belief state, and, equivalently, the initial proposition
layer representing the state. (The super-script of a particle denotes its assigned pos-
sible world index, and the sub-script denotes its time index.) Later particles (k > 0)
correspond to sets of action outcomes sampled at or before time k.

In the example (assuming N=4), the particles map to the states: x0
0 = s0, x1

0 =
s0, x2

0 = s1, x3
0 = s1.

The initial proposition layerP0 is a set of labeled propositionsP0 = {p|�0(p) �= ∅},
where each proposition must be labeled with at least one particle. A proposition is
labeled �0(p) = {xn

0 |p ∈ s, xn
0 = s} to denote particles that correspond to states

where the proposition holds.

In the example, the initial proposition layer is P0 = {atP1, atP2}, and the labels
are:

�0(atP1) = {x0
0, x

1
0}

�0(atP2) = {x2
0, x

3
0}

Action Layer: The action layer at time k consists of all actions whose enabling
precondition is enabled, meaning all of the enabling preconditions hold together
in at least one particle. The action layer is defined as all enabled actions Ak =
{a|�k(a) �= ∅}, where the label of each action is the set of particles where it is
enabled �k(a) =

⋂
p∈ρe(a) �k(p). When the enabling precondition is empty the label

contains all particles.

In the example, the zeroth action layer is A0 = {LP1, LP2}, and the labels are:

�0(LP1) = �0(LP2) = {x0
0, x

1
0, x

2
0, x

3
0}

Both actions are enabled for all particles because their enabling preconditions are
empty, thus always enabled.

Effect Layer: The effect layer contains all effects that are labeled with a parti-
cle Ek = {ϕij(a)| �k(ϕij(a)) �= ∅}. Determining which effects get labeled re-
quires simulating the path of each particle, xn

k+1 ∼ P (Xk+1|xn
k). The path of a

particle is simulated by sampling from the distribution over the joint outcomes of
all enabled actions. We sample by first identifying the actions that are applicable
for a particle xn

k . An action is applicable for particle xn
k if xn

k ∈ �k(a). For each

6 While we represent belief states with ADDs, our current implementation samples belief
states by enumerating the states represented by the ADD, generating a random probability,
and selecting the corresponding state via the cumulative density function.
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applicable action we sample from the distribution of its outcomes, adding each
sampled outcome Φi(a) to the particle at the next time step xn

k+1. The set of sam-
pled outcomes identifies the path of xn

k to xn
k+1. We record the path by adding

xn
k+1 to the labels �k(ϕij(a)) of applicable effects of sampled outcomes, such that

�k(ϕij(a)) = {xn
k |xn

k ∈ �k(a), Φi(a) ∈ xn
k , and xn

k ∈
⋂

p∈ρij(a) �k(p)}. Note that
even though an outcome is sampled for a particle, some of its effects may not be
applicable because their antecedents are not supported by the particle.

In the example, we first simulate x0
0 by sampling the outcomes of all actions ap-

plicable in x0
0, which is both Load actions. Suppose we get outcome 0 for LP1

and outcome 1 for LP2, which are then labeled with x0
1. Particle x1

0 happens to
sample the same outcomes as x0

0, and we treat it similarly. Particle x2
0 samples

outcome 0 of both actions. Note that we do not label the effect of outcome 0
for LP1 with x2

1 because the effect is not enabled in x2
0. Finally, for particle x3

0

we sample outcome 1 of LP1 and outcome 0 of LP2. Thus, the effect layer is
E0 = {ϕ00(LP1), ϕ10(LP1), ϕ00(LP2), ϕ10(LP2)}, labeled as:

�0(ϕ00(LP1)) = {x0
1, x

1
1}

�0(ϕ10(LP1)) = {x3
1}

�0(ϕ00(LP2)) = {x2
1, x

3
1}

�0(ϕ10(LP2)) = {x0
1, x

1
1}

Proposition Layer: Proposition layer Pk contains all propositions that are made
positive by an effect in Ek−1. Each proposition is labeled by the particles of every
effect that give it support. The proposition layer is defined as Pk = {p|�k(p) �= ∅},
where the label of a proposition is �k(p) =

⋃
ϕij(a)∈Ek−1:p∈ε+

ij(a) �k−1(ϕij(a)).

In the example, the level one proposition layer isP1 = P0∪{inP}. The propositions
are labeled as:

�1(atP1) = {x0
1, x

1
1}

�1(atP2) = {x2
1, x

3
1}

�1(inP) = {x0
1, x

1
1, x

2
1, x

3
1}

The propositions from the previous proposition layer P0 persist through implicit
noop actions, allowing them to be labeled as in the previous level – in addition to
particles from any new supporters. The inP proposition is supported by two effects,
and the union of their particles define the label.

Termination: McLUG construction continues until a proposition layer supports
the goal with probability no less than τ . We assess the probability of the goal at
level k by finding the set of particles where the goal is supported and taking the
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ratio of its size with N. Formally,

Pr(G|Xk) ≈ |
⋂

p∈G
�k(p)|

N

We also define level off for theMcLUG as the condition when every proposition in
a proposition layer is labeled with the same number of particles as in the previous
level. If level off is reached without Pr(G|Xk) ≥ τ , then we set the heuristic value
of the source belief state to∞.

We note that whether we use the estimated probability of goal satisfaction or level
off to terminate McLUG expansion, it is possible for the McLUG to continue
changing (if we were to further expand). It should be clear that goal satisfaction will
increase monotonically as the number of levels grows. It is less obvious that level
off is not a sufficient fix point criterion. Since we are sampling action outcomes, it is
possible to reach level off without sampling an outcome that will add new particles
that label the goal. However, it is possible that expansion after level off will sample
the outcome and change the particles that label the goal.

Another issue that affects our relaxed plan heuristic (described next) is the choice
of the level to support the goals and/or terminate expansion. We obviously want
to support the goals no earlier than the level where the achievement probability is
greater or equal to τ . It is not clear which of the later levels to use. In each extra
level it is presumably more costly to support the goal, but with a potentially higher
probability. This issue reveals the multi-objective nature of CPP. Since the CPP
problem itself is not defined as multi-objective, we make the following assumption
about desirable plans. We wish to minimize the cost of a plan that achieves the
goal with probability no less than τ . As such, we terminateMcLUG expansion at
the first proposition layer that satisfies the goal with probability no less than τ . It
should be straight forward to adapt theMcLUG to the more general multi-objective
setting.

4.3 Heuristics

By terminating construction of theMcLUG at level k, we can use k as a measure
of the number of steps needed to achieve the goal with probability no less than τ .
This heuristic is similar to the level heuristic defined for the LUG [12]. As has been
shown in non-deterministic and classical planning, relaxed plan heuristics are often
much more effective, despite being inadmissible. Since we are already approximat-
ing the possible world distribution of the planning graph and losing admissibility,
we decide to use relaxed plans as our heuristic.

The intuition behind a conformant relaxed plan is to capture both the positive inter-
action and independence between possible worlds as each achieves the goals [12].
In [12] we explore multiple ways to compute relaxed plan heuristics from explicit
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RPExtract(LUG(b), G)

1: Let n be the index of the last level of LUG(b)
2: for all p ∈ G do {Initialize Goals}
3: PRP

n ← PRP
n ∪ p

4: �RP
n (p)← ⋂

p′∈G
�n(p′)

5: end for
6: for k = n...1 do
7: for all p ∈ PRP

k do {Support Each Proposition}
8: �← �RP

k (p) {Initialize Possible Worlds to Cover}
9: while � �= ∅ do {Cover Label}

10: Find ϕij(a) ∈ Ek−1 such that p ∈ ε+
ij(a) and (�k(ϕij(a))∩�) �= ∅

11: ERP
k−1 ← ERP

k−1 ∪ ϕij(a)
12: �RP

k (ϕij(a))← �RP
k (ϕij(a)) ∪ (�k(ϕij(a)) ∩ �)

13: ARP
k−1 ← ARP

k−1 ∪ a
14: �RP

k (a)← �RP
k (a) ∪ (�k(ϕij(a)) ∩ �)

15: �← �\�k(ϕij(a))
16: end while
17: end for
18: for all a ∈ ARP

k−1, p ∈ ρe(a) do {Insert Action Preconditions}
19: PRP

k−1 ← PRP
k−1 ∪ p

20: �RP
k−1(p)← �RP

k−1(p) ∪ �RP
k−1(a)

21: end for
22: for all ϕij(a) ∈ ERP

k−1, p ∈ ρij(a) do {Insert Effect Preconditions}
23: PRP

k−1 ← PRP
k−1 ∪ p

24: �RP
k−1(p)← �RP

k−1(p) ∪ �RP
k−1(ϕij(a))

25: end for
26: end for
27: return (PRP

0 , ERP
0 ,ARP

0 ,PRP
1 , ...,ARP

n−1, ERP
n−1,PRP

n )

Fig. 5. LUG Relaxed Plan Extraction Algorithm.

and symbolic sets of planning graphs. The most simple approach is to extract a
relaxed plan from each planning graph and somehow aggregate the relaxed plans
to reflect the conformant (aggregate) cost of achieving the goals in every planning
graph. We can either take the summation or maximization of the number of ac-
tions in each relaxed plan, or merge the relaxed plans. We merge relaxed plans by
unioning the actions appearing in the first step, second step, and so on of each re-
laxed plan. The unioned relaxed plan then reflects the actions needed in each of the
planning graphs and summing the number of resulting actions avoids counting the
common actions more than once.

In the LUG (and theMcLUG), we can find this unioned relaxed plan symbolically,
meaning the unioning is implicit. The procedure for LUG relaxed plan extraction is
shown in Figure 5. Much like the algorithm for relaxed plan extraction from clas-
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sical planning graphs, LUG relaxed plan extraction supports propositions at each
time step (lines 7-17), and includes the supporting actions in the relaxed plan (lines
18-25). The significant difference with classical planning is with respect to the re-
quired label manipulation, and to a lesser extent, reasoning about actions and their
effects separately. The algorithm starts by initializing the set of goal propositions
PRP

n at time n and associating a label �RP
n (p) with each to denote the possible

worlds where they must be supported (lines 2-5). Then for each time step (lines
6-26), the algorithm determines how to support propositions and what propositions
must be supported at the preceding time step. Supporting an individual proposition
at time k in possible worlds �RP

k (p) (lines 7-17) is the key decision point of the
algorithm, embodied in line 10. First, we initialize a variable � with the remain-
ing possible worlds to support the proposition (line 8). While there are remaining
possible worlds to support, we choose effects and their associated actions (lines
9-16). Those effects that i) have the proposition as a positive effect and ii) support
it in possible worlds that need to be covered (i.e., �k(ϕij(a)) ∩ � �= ∅) are potential
choices. In line 10, one of these effects is chosen (later we describe some heuris-
tics for making this choice). We store the effect (line 11) and the possible worlds it
supports (line 12), as well as the associated action (line 13) and the possible worlds
where its effect is used (line 14). The possible worlds left to support are those not
covered by the chosen effect (line 15). After selecting the necessary actions and
effects in a level, we examine their preconditions and antecedents to determine the
propositions we must support next (lines 18-25); the possible worlds to support
each proposition are simply the union of the possible worlds where they are needed
to support an action or effect (lines 20 and 24). The extraction ends by returning
the labeled subgraph of the LUG that is needed to support the goals in all possible
worlds (line 27).

The same procedure will work, without modification, to extractMcLUG relaxed
plans. However, our interpretation of the semantics does change slightly. We pass a
McLUG for a given belief state b to the procedure, instead of a LUG. The labels for
goal propositions (line 4) represent particles, and using the McLUG termination
criterion, we do not require labels to contain all particles – only a proportion no
less than τ .

In our example, the goal inP is labeled with four particles {x0
1, x

1
1, x

2
1, x

3
1}. Particles

x0
1, x

1
1 are supported by ϕ00(LP1), and particles x2

1, x
3
1 are supported by ϕ00(LP2),

so we include both LP1 and LP2 in the relaxed plan. For each action we subgoal
on the antecedent of the chosen conditional effect as well as its enabling precondi-
tion. By including LP1 in the relaxed plan to support particles x0

0, x
1
0, we have to

support atP1 for the particles. We similarly subgoal for the particles supported by
LP2. Fortunately, we have already reached level 0 and do not need to support the
subgoals further. The value of the relaxed plan is two because we use two actions.

There is one important aspect of the relaxed plan extraction that we have not dis-
cussed: how to select the supporting effects (line 10). Lines 8 through 16 are ac-
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tually a greedy set cover algorithm: the set of possible worlds � must be covered
with subsets {�k(ϕij(a))|ϕij(a) ∈ Ek−1, (�k(ϕij(a)) ∩ �) �= ∅}. The typical greedy
set cover algorithm will choose the subset that covers the most remaining elements
(possible worlds) at each iteration. We use this strategy, with the only caveat that
we prefer noop actions (described in more detail below). Aside from noops, we
prefer effects that cover more possible worlds because they contribute more prob-
ability mass; hopefully by concentrating the probability mass within fewer effects,
we will include fewer actions and have lower cost relaxed plans.

Our strategy for preferring noop actions follows a potentially non-intuitive line
of reasoning that differs very much from the reasoning used in classical relaxed
plan extraction. In classical planning, preferring noops ensures that propositions
are supported at the earliest level possible, meaning they can potentially support
more actions at later levels. The net effect is that fewer actions will be included in
the relaxed plan. Including fewer actions in aMcLUG relaxed plan is not neces-
sarily ideal. We would like to capture how probabilistic actions must sometimes be
executed multiple times to accumulate probability for supported propositions and
avoid counting extra actions that do not increase probability.

We argue that preferring noops in McLUG relaxed plan extraction does in fact
achieve this desirable behavior, under the following assumption: the particles sup-
porting a proposition accumulate over the levels of the planning graph. Except in
pathological cases where we use very few particles and action outcome distribu-
tions are very skewed (or deterministic), it is not possible to support a proposition
with all particles in one level of the McLUG. In general, a proposition accumu-
lates support over levels, meaning the supporting actions are staggered over the
levels of theMcLUG. Preferring noops ensures that, with respect to each individ-
ual particle, an appropriate supporting action is chosen as early as possible in the
planning graph. However, due to the staggered support, the relaxed plan includes
these actions (that may be different instances of the same action) across several
levels of the planning graph. The relaxed plan heuristic counts these actions sepa-
rately, capturing how repetition is necessary for supporting a proposition with high
probability.

4.4 Selecting the number of particles N

Up to this point, we have avoided the issue of selecting N , the number of particles
to use in eachMcLUG. As we will demonstrate in the empirical evaluation, good
choices for N are distinct to each problem. In this section we investigate an auto-
mated (domain-independent) method to find a good N . Our objective is to find a
value for N that is large enough to provide informed heuristics, but small enough
to keep heuristic computation cost low. We determine N by the number of state
samples needed to approximate representative belief states.
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It is well known that classical planning graphs approximate state transition graphs,
reasoning about the propositions (union of states) reachable within k steps of a
state. Similarly, theMcLUG approximates the belief state transition graph, reason-
ing about the probability distribution over proposition layers within k steps from a
belief state. The belief states that we approximate with theMcLUG play a role in
selecting N . A natural characterization of these belief states (in our setting) is the
number of state samples needed for their approximation. This raises two concerns:

• How do we approximate a belief state?
• Which belief states do we approximate?

The answer to the first concern readily exists in the particle filtering literature. For
the second, we use a random walk in the belief state space to find reachable belief
states.

Approximating a Belief State: Fox [19] addresses the quality of sample-based
approximation for the purpose of dynamically adjusting the number of particles
used in a particle filter. Fox presents an algorithm for determining the number of
particles required to approximate a multinomial distribution, such as a finite state
belief state. The algorithm guarantees with probability 1− δ that the error between
the approximation b̂ and the true belief state b is less than ε. By measuring error with
KL-distance [15], it is possible to derive a value for the belief state approximation
N(b, ε) as

N(b, ε) =
1

2ε
χ2

kb−1,1−δ,

where χ2
kb−1,1−δ is the upper 1−δ quantile of the chi-squared distribution with kb−1

degrees of freedom. The value of kb is the number of unique states represented in
the approximation b̂. The term for the number of samples can be approximated by
the Wilson-Hilferty transformation [27] to obtain

N(b, ε) =
1

2ε
χ2

kb−1,1−δ ≈
kb − 1

2ε

{
1− 2

9(kb − 1)
+

√
2

9(k − 1)
z1−δ

}3

,

where z1−δ is the upper 1− δ quantile of the normal distribution. Since we have not
approximated the belief state yet, we do not know kb and hence we do not know
N(b, ε). Thus, we must iteratively compute N(b, ε) by drawing state samples from
the belief state, computing kb (by counting the number of unique sampled states),
and then computing N(b, ε). Once we have sampled the same number of states as
our current value of N(b, ε), then we have a number of state samples N(b, ε) that
with probability 1− δ will approximate the belief state with error less than ε.
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Finding Belief States to Approximate: With a method to determine the number
of particles to approximate a given belief state, we must determine which belief
states to approximate. Many problems start with a belief state containing a single
state, which could serve as a poor indicator of stochastic belief states reached after
a few steps. It seems reasonable to consider several belief states and use the average
number of particles needed for approximation.

Since theMcLUG is approximating all reachable belief states, we need not focus
solely on finding belief states reached by a feasible plan. Ideally we would like to
characterize the belief states which are going to affect search decisions. However,
finding these belief states is difficult without a heuristic to guide the search (the very
same heuristic for which we are determining an N ). Instead we use a single random
walk (sampling action choices) in the belief state space to identify reachable belief
states. 7 We determine the length of the random walk by computing a heuristic
value h(bI) of the initial belief state (using a small number of particles). With a set
of belief states B (expanded in our random walk), we can compute the number of
state samples N(b, ε) needed to approximate each b ∈ B with error less than ε. We
define the value for N as the average of the number of samples per belief state,

N =

∑
b∈B

N(b,ε)

|B|

A final consideration for selecting N is the error ε and the probability of making at
most ε error, δ. In our empirical evaluation we will identify a good value for ε for
a fixed δ. While we are trading one free parameter (N ) for another (ε), our intent is
to find a reasonable domain-independent parameter setting value for ε.

5 Empirical Analysis: Setup

In this section we describe the setup of the empirical analysis by describing the
planners, domains, and testing environment. We externally evaluate our planner
POND and its heuristic based on theMcLUG by comparing with one of the lead-
ing approaches to CPP that was available at the time of writing, CPplan [25,26].
We also internally evaluate our approach by adjusting (both manually and automat-
ically) the number of particles N that we use in each McLUG. We refrain from
comparing with POMDP solvers (such as POMDP-solve [14]), as did Hyafil and
Bacchus [26], because they were shown to be effective only on problems with very
small state spaces (e.g., Slippery Gripper and Sand Castle-67) and we care about
problems with large state spaces. Our approach does only slightly better than CP-
plan on the small state space problems and we doubt we are superior to the POMDP
solvers on these problems. Recent work in approximate POMDP solving [41] may

7 Multiple random walks may improve our knowledge of the reachable belief state space,
but in informal experiments additional random walks did not change the results.
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make a better comparison, but there are many implementation-level details prevent-
ing a thorough comparison at this time.

5.1 Planners

In the following we describe the implementation of our planner POND and the
basic principles of the CPplan planner, as well as the way we compare the planners.
We choose CPplan for comparison because at the time of this writing other existing
planners that directly solve our problem do not scale nearly as well.

POND: Our planner is implemented in C++ and uses several existing technologies.
It employs the PPDDL parser [47] for input, the IPP planning graph construction
code [29] for the McLUG, and the CUDD BDD package [45] for representing
belief states, actions, and labels.

We use ADD operations to compute successor belief states, but sample from belief
states by enumerating their states. 8 Because we use ADDs, in the worst case it
is possible for the representation of belief states to have exponential size (i.e., the
ADD is a tree where each path is length |P | and each leaf is mapped to a different
probability).

Figure 6 depicts our planner architecture. The two inputs to the planner are the
problem specification, and the method to select the number of particles N . The
problem is grounded, pre-processed, and compiled into ADDs. If we choose to
automatically determine number of particles, then we determine the length of our
random walk, take the random walk, analyze the belief states in the random walk,
and finally compute N . The search commences by expanding search nodes and
computing heuristics. Each heuristic computation involves constructing aMcLUG
with the chosen number of particles until the goal is reached with enough probabil-
ity. From theMcLUG, we extract a relaxed plan whose number of actions is used
for the h-value of a search node. Upon finding a plan, search ends and returns the
plan.

CPplan: CPplan is an optimal bounded length planner that uses a CSP solver for
CPP. Part of the reason CPplan works so well is its efficient caching scheme that
re-uses optimal plan suffixes to prune possible solutions. In comparison, our work
computes a relaxation of plan suffixes to heuristically rank partial solutions. CPplan
finds the optimal probability of goal satisfaction for a given plan length (an NPPP-
complete problem, [32]), but POND, like Buridan [30], finds plans that satisfy the
goal with probability no less than τ (an undecidable problem, [34]). CPplan could

8 One could improve belief state sampling by sampling directly from the ADD, subject to
the probability distribution represented by the ADD.
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be used to find an optimal length plan that exceeds τ by iterating over increasing
plan lengths (similarly to BlackBox for classical planning [28]).

5.2 Domains

In the following we describe four domains used in the empirical evaluation. Within
each domain we describe several problems instances and domain variations. The
first two domains are considerably more difficult than the last two domains, but all
exhibit a difference in scalability between POND and CPplan.

Logistics: The Logistics domain has the standard Logistics actions of un/loading,
driving, and flying, but adds uncertainty. Hyafil and Bacchus [26] enriched the do-
main developed by Hoffmann and Brafman [7] to not only include initial state
uncertainty, but also effect uncertainty. In each problem there are some number of
packages whose probability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful. Plans require several
loads and unloads for a single package at several locations, making a relatively sim-
ple deterministic problem a very difficult stochastic problem. We compare on three
problems p2-2-2, p4-2-2, and p2-2-4, where each problem is indexed by the num-
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ber of possible initial locations for a package, the number of cities, and the number
of packages. See [26] for more details.

Grid: The Grid domain, as described by Hyafil and Bacchus [26], is a 10x10 grid
where a robot can move one of four directions to adjacent grid points. The robot
has imperfect effectors and moves in the intended direction with high probability
(0.8), and in one of the two perpendicular directions with a low probability (0.1).
As the robot moves, its belief state grows and it becomes difficult to localize itself.
However since the grid borders provide a barrier, moves that would put the robot
through the barrier leave the robot in its original position. Thus, by bumping the
barrier, it is possible for the robot to localize. The goal is to reach the upper corner
of the grid. The initial belief state is a single state where the robot is at a known
grid point. We test on the most difficult instance where the robot starts in the lower
opposite corner. We also discuss instances of the domain where the grid is differ-
ent sizes (5x5 or 15x15) or the transitions are more stochastic (the probability of
intended moves becomes 0.5 instead of 0.8).

Slippery Gripper: Slippery Gripper is a well known problem that was originally
presented by Kushmerick, et. al. [30]. There are four probabilistic actions that clean
and dry a gripper and paint and pick-up a block. The goal is to paint the block and
hold it with a clean gripper. Many of the lower values of τ require very short plans
and take very little run time, so we focus on the higher values of τ where we see
interesting scaling behavior.

Sand Castle-67: Sand Castle-67 is another well known probabilistic planning prob-
lem, presented by Majercik and Littman [35]. The task is to build a sand castle with
high probability by using two actions: erect-castle and dig-moat. Having a moat
improves the probability of successfully erecting a castle, but erecting a castle may
destroy the moat. Again, scaling behavior is interesting when τ is high.

5.3 Environment

In our test setup, we use a 2.66 GHz P4 Linux machine with 1GB of memory, with
a timeout of 20 minutes for each problem. To compare with CPplan, we run CPplan
on a problem for each plan length until it exceeds our time or memory limit. We
record the probability that CPplan satisfies the goal for each plan length. We then
give POND a series of problems with increasing values for τ (which match the
values found by CPplan). If POND can solve the problem for all values of τ solved
by CPplan, then we increase τ by fixed increments thereafter. We ran POND five
times on each problem and present the average run time and plan length.

Comparing the planners in this fashion allows us to measure the plan lengths found
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by POND to the optimal plan lengths found by CPplan for the same value of τ .
Our planner often finds plans that exceed τ (sometimes quite a bit) and includes
more actions, whereas CPplan meets τ with the optimal number of actions. Nev-
ertheless, we feel the comparison is fair and illustrates the pros/cons of an optimal
planner with respect to a non-optimal heuristic planner.

6 Empirical Analysis: External Evaluation & Particle Set Size

In this section we evaluate our approach by first externally comparing with CPplan,
and then internally adjusting the number of particles used in each McLUG. The
internal study uses both a manually and an automatically determined number of
particles. With manual particle selection we seek to identify useful ranges for the
number of particles in each problem to evaluate automatically selecting the number
of particles. Within the automated approach we characterize the effect of adjusting
our approximation error ε in order to find good values of N .

6.1 Comparison with CPplan

We compare with CPplan on each of the domains mentioned in the previous section
using a version of POND where N = 16. As we will see later, 16 is not necessarily
the best value for N across all problems, but it does allow us to show the differ-
ence in scalability between CPplan and POND. We note that CPplan performs
marginally worse than previously reported because our machine has one third the
memory of the machine Hyafil and Bacchus [26] used for their experiments. One
major limitation on CPplan scalability is memory consumption.

Logistics: The plots in Figures 7, 8, and 9 compare the total run time in seconds
(left) and the plan lengths (right) of POND with 16 particles in theMcLUG versus
CPplan. In this domain we also prune search with helpful actions from the relaxed
plan [23]. We notice that CPplan is able to at best find solutions where τ ≤ 0.26
in p2-2-2, τ ≤ 0.09 in p4-2-2, and τ ≤ 0.03 in p2-2-4. In most cases POND is
able to find plans much faster than CPplan for the problems they both solve. It is
more interesting that POND is able to solve problems for much larger values of
τ . With 16 particles in eachMcLUG, POND finds solutions where τ ≤ 0.95 in
p2-2-2, τ ≤ 0.75 in p4-2-2, and τ ≤ 0.035 in p2-2-4, which is respectively 3.7, 8.3,
1.2 times the maximum values of τ solved by CPplan. As we will see later, we can
solve for much larger values of τ by using different numbers of particles. In terms
of plan quality, the average increase in plan length for the problems we both solved
was 5.83 actions in p2-2-2 (43% longer), 5.83 actions in p4-2-2 (46% longer), and
7.5 actions in p2-2-4 (42% longer). The plot of plan lengths gives some intuition
for why CPplan has trouble finding plans for greater values of τ . The plan lengths
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Fig. 8. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p4-2-2
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Fig. 9. Run times (s) and Plan lengths vs. τ (log scale) for Logistics p2-2-4

for the larger values of τ approach 40-50 actions and CPplan is limited to plans of
around 10-15 actions.

Grid: Figure 10 shows total run times and plan lengths for the 10x10 Grid problem.
We notice that CPplan can solve the problem for only the smallest value of τ ,
whereas POND finds plans for much larger values of τ . For the single problem
we both solve, we found a solution with 6 more actions (26% longer).

Slippery Gripper: Figure 11 shows the total time and plan length results for Slip-
pery Gripper. For short plans, CPplan is faster because theMcLUG has some addi-
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Fig. 12. Run times (s), and Plan lengths vs. τ for Sand Castle-67.

tional overhead, but as τ increases and plans have to be longer theMcLUG proves
useful. Using 16 particles, we are able to find solutions faster than CPplan in the
problems where τ > .995. In terms of plan quality, our solutions include on average
1.6 more actions (20% longer).

Sand Castle-67: The plots for run time and plan length in Figure 12 show that
the run time for CPplan has an exponential growth with τ , whereas our method
performs much better. As τ increases, we are eventually able to outperform CPplan.
In terms of plan quality, our plans included an average of 0.88 more actions (7%

30



longer).

Discussion: In comparison with CPplan, the major difference with our heuristic
approach is the way that plan suffixes are evaluated. CPplan must exactly com-
pute plan suffixes to prune solutions, whereas we estimate plan suffixes. As plans
become longer, it is more difficult for CPplan to exactly evaluate plan suffixes be-
cause there are so many and they are large.

Since POND may find suboptimal plans, CPplan may be able to find higher proba-
bility solutions in the extra steps taken by POND. In fact, CPplan may only need to
repeat a few of the key actions to increase the probability of goal satisfaction. This
suggests an approach that takes a small seed plan and repeats it sufficiently many
times to guarantee a certain probability of goal satisfaction. Using such sequences
could amount to anything from macro-actions to plan merging. Buridan [30] pro-
vides a similar functionality within the context of partial order planning, but fails
to scale for the lack of effective heuristics. Buridan includes specific search oper-
ations that add several invocations of an action to increase the probability of an
open precondition. Directly facilitating repetition in state based search could com-
plicate the search algorithm unnecessarily. Our approach does in fact reason about
repeating actions within the heuristic, but not explicitly in the search. That is, when
an action is needed to support the goal in multiple planning graphs (each for a
different sample), then it is possible for the action to appear multiple times in the
relaxed plans. This repetition in the relaxed plan models the repetition needed to
accumulate greater probability.

Overall, our method is very effective in the CPP problems we evaluated, with the
only drawback being longer plans in some cases. To compensate, we believe it
should be reasonably straight-forward to post-process our plans to cut cost by re-
moving actions. Nevertheless, it is a valuable lesson to see the size of problems that
we can solve (in very little time) by relaxing our grip on finding optimal plans.

6.2 Particle Set Size

In this section we further analyze the effect of N on planner performance. We
present results for both the manual and automatic selection of N . In the manual
approach, we pick values of N between 4 and 512 (increasing exponentially). In the
automated approach, we use 0.15, 0.1, 0.05 for ε (the KL-distance approximation
error). The heuristic that determines the length of the random walk uses N = 4
in theMcLUG. The probability of approximation error δ is fixed at 0.1 (informal
experiments that varied δ did not significantly impact results).

In the following, we show plots of the time to find solutions with varying values
of τ and N in every domain. The height of each point (denoted by a vertical line)

31



indicates the total time for the test. The planar orientation of the point indicates
the values of τ and N . Each plot shows the results for manual particle selection
as black points connected by lines, where each point is the average of 5 runs for
the same value of τ and N . The automated particle selection results are shown
as colored points that are not connected by lines (depicted in the legends by the
value of ε). Each instance solved by the automated method can use a different
number of particles, so we do not average over the automated runs. We show both
automated and manual particle selection results in one plot to identify the base-
line performance expected for fixed values of N and how the automated selection
performs by picking varying values of N . We discuss results for each problem in
detail and conclude with an analysis of the average values of N chosen by each ε
compared with the best manual value of N for each problem.
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Fig. 13. Run times (s) vs. τ vs. N for Logistics p2-2-2

Logistics: Figures 13, 14, and 15 show the time to solve instances in the Logistics
domain. In p2-2-2, we are able to scale well with any number of particles, but see
that planning time increases when we use too few or too many particles, as one
might expect. Without the right number of particles the heuristic is either too weak
or too costly.

In p4-2-2 we need more particles than p2-2-2 to perform well (16 particles does
not scale). This is due to starting with a more stochastic initial belief state (there
are more packages we are uncertain about). It is interesting to notice that manual
particle selection can only find plans for large τ when N is large, yet the automatic
particle selection finds plans when N is much smaller. This is an artifact of using
a stochastic heuristic, rather than finding a special number of particles that works
well. We see the opposite behavior in other problems, where the same number of
particles may or may not solve the same instances.
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In p2-2-4, we again see that too few or too many particles harms performance.
Compared with p2-2-2 and p4-2-2, using more particles here is also helpful. Even
though p4-2-2 and p2-2-4 have the same number of possible initial states, p2-2-
4 has more actions (which are stochastic) and requires longer plans for the same
values of τ .

Table 1 summarizes the average time in seconds (T ) and number of solutions (S)
results for manual particle selection in the Logistics problems, where each problem
had (#) instances. With N = 64, POND solves the most instances in the least
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N = 16 N = 32 N = 64 N = 128

Problem # T S T S T S T S

Logistics p2-2-2 65 96.36 59 82.73 60 20.16 61 35.26 36

Logistics p4-2-2 80 78.04 35 31.91 42 44.82 49 51.60 47

Logistics p2-2-4 40 98.55 24 107.74 27 136.31 31 92.26 29
Table 1
Summary of results for manual N in Logistics domains, where # is the total number of

instances, T is the average solution time (s) and S is the number of solved instances.

amount of time for all problems. This is much better than the results for N = 16,
which we used to compare with CPplan. The automated particle selection does best
with ε = 0.15 and ε = 0.1. With ε = 0.05, the number of particles can be too large.
The automated selection typically selects values for N between 32 and 256. As
we will see later, the automated particle selection is able to outperform the manual
selection in some problems, despite using more than 64 particles. We will discuss
the automated particle selection results summary (in Table 4) in more detail later.
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Fig. 16. Run times (s) vs. τ vs. N for Grid 10x10 with 0.8 correct transitions.

Grid: We use four versions of the Grid domain in this analysis to characterize
how differences in the length of plans and uncertainty in action effects changes
performance with the number of particles. We use the 10x10 Grid problem from
our previous analysis as the base domain and extend it in two orthogonal directions.
First, we keep the 10x10 Grid but change the probability of moving in the intended
direction to 0.5 from 0.8 to get belief states that are less peaked. Second, we change
the size of the Grid to 5x5 and 15x15 (while keeping 0.8 for transitions as in the
base domain).
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Fig. 17. Run times (s) vs. τ vs. N for Grid 10x10 with 0.5 correct transitions.

Figure 16 depicts results for the base domain. As the number of particles falls too
low or grows too large, the total time increases and is variable across values of
τ (similar to Logistics). We note however that we are able to do well with much
fewer particles (around 16-32) than in Logistics (around 64-128). This difference
between Grid and Logistics may be due to the relaxed plan heuristic giving better
estimates in this simpler (more regular) domain structure. As we will see in the
other versions of the Grid domain, the effective number of particles was not very
different when we changed size, but are different when changing uncertainty.

Figure 17 depicts results for making transitions work with probability 0.5 instead of
0.8. It is much more difficult to reach the goal with high probability in this version.
Every attempt to increase goal probability will also decrease goal probability quite
a bit. In order to transition some probability mass to goal states, the same action will
transition probability mass away from goal states. It is unclear if it is impossible to
reach the goal with high probability, or if the heuristic is poor. Where in the base
domain it was possible to perform well with just about any number of particles,
it is apparent that too few particles is insufficient in this version. This is because
more particles are needed to capture the significantly “flat” belief state distributions
induced by the increased uncertainty. The automatic particle selection notices this
distinction, and chooses more particles for this domain than the base domain.

Figure 18 shows results for the 5x5 Grid domain. POND needs very few particles
to do well in this domain because the plans are relatively short. Belief states do
not become very flat because they contain relatively fewer states. The automated
particle selection performs best when ε is 0.15 or 0.1.

Figure 19 shows results for the 15x15 Grid domain. Like the domain with 0.5 prob-
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Fig. 19. Run times (s) vs. τ vs. N for Grid 15x15 with 0.8 correct transitions.

ability transitions, using too few particles leads to problems. Due to longer plans
(not more uncertainty) it is possible to have a flat belief state. The automated par-
ticle selection tends to overestimate N , increasing planning time due to the cost of
computing the heuristic.

Table 2 summarizes the results for manual particle selection in the four versions of
the Grid domain. The best performer in most versions is 16 particles, with the only
exception of 8 particles in the 5x5 Grid. The reason more particles are needed in
larger grids is that belief states can get potentially very flat over longer plans. The
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N = 4 N = 8 N = 16 N = 32

Problem # T S T S T S T S

Grid 10x10 (0.8) 50 159.36 50 142.79 50 136.67 50 150.06 49

Grid 10x10 (0.5) 30 144.81 25 152.45 30 106.35 30 151.42 30

Grid 5x5 (0.8) 20 1.07 20 1.03 20 2.31 20 5.95 20

Grid 15x15 (0.8) 20 108.90 10 152.28 12 212.53 18 435.04 20
Table 2
Summary for results for manual N in Grid domains, where # is the total number of in-

stances, T is the average solution time (s) and S is the number of solved instances.

automated particle selection is able to perform comparably to the best manual par-
ticle selection, except in the 15x15 grid where the cost of computing the heuristic
for low values of ε is prohibitive.
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Fig. 20. Run times (s) vs. τ vs. N for Slippery Gripper.

Slippery Gripper: Figure 20 shows results for the Slippery Gripper problem. The
results indicate few particles are needed, and extra particles just increase planning
time. Using only four particles may be perhaps too few because time does start
to increase only slightly for high values of τ . The automated particle selection
performs reasonably well on average, with a few instances where it selects larger
values of N . Table 3 lists a summary of results for the manual particle selection
that show using 16 particles does best overall.

Sand Castle-67: Figure 21 shows results for the Sand Castle-67 problem. Again,
choosing the right number of particles is important, in this case 16-32. The auto-
mated particle selection is able to find good values for N in this domain. There
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N = 4 N = 8 N = 16 N = 32

Problem # T S T S T S T S

Slippery Gripper 50 1.21 50 0.31 50 0.18 50 0.70 50

Sand Castle-67 85 0.13 85 0.08 85 0.06 85 0.11 85
Table 3
Summary for results for manual N in the Slippery Gripper and Sand Castle-67 domains,

where # is the total number of instances, T is the average solution time (s) and S is the
number of solved instances.
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0.9
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0.94

0.96
0.98

1

4 8 16 32 64 128

Fig. 21. Run times (s) vs. τ vs. N for Sand Castle-67.

are relatively few states and plans are short and the sample-based approximation is
less sensitive. Table 3 shows a summary of results for manual particle selection that
identifies 16 particles as the best choice for this domain.

6.3 Summary of Automating the Size of Particle Sets

Selecting the right number of particles for a domain is not easy. Uncertainty, as
well as the cost and effectiveness of the relaxed plan heuristic affect the number of
particles needed. While automatically estimating the right number of particles does
not reason about the cost of computing the heuristic, only the accuracy, our auto-
mated particle selection technique did well across all problems. Table 4 shows a
summary of the results for the automated particle selection with different values of
ε along with the best manual N for each problem. Of the three values of ε that were
tried, 0.1 performed best, solving the most problems. Grid 10x10 (0.8) is one do-
main where the automated selection took less time than the best manual selection.
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ε = 0.1 ε = 0.01 ε = 0.005 Best N

Problem # T S T S T S T S N

Logistics p2-2-2 65 38.65 52 74.43 60 103.40 63 20.16 61 64

Logistics p4-2-2 80 105.57 69 115.09 76 198.27 79 44.82 49 64

Logistics p2-2-4 50 200.18 34 182.97 31 369.16 30 136.31 31 64

Grid 10x10 (0.8) 50 64.45 49 87.87 49 250.22 50 136.67 50 16

Grid 10x10 (0.5) 30 311.52 26 407.99 22 861.44 12 106.35 30 16

Grid 5x5 (0.8) 20 2.13 20 3.88 20 7.10 20 1.03 20 8

Grid 15x15 (0.8) 20 735.85 18 680.49 14 0 0 212.53 18 16

Slippery Gripper 50 11.08 50 8.59 50 6.83 50 0.18 50 16

Sand Castle 85 1.68 85 1.40 85 1.44 85 0.06 85 16

450 1471.11 403 1562.70 407 1797.85 389 658.11 394

Table 4
Summary of results for ε compared with best manual N , where # is the total number of

instances, T is the average solution time (s) and S is the number of solved instances.

The automated particle selection generally takes more time than the best manual
particle selection by over or under estimating the right number of particles by a
small amount. This suggests that other factors may be important, such as the shape
of the search space (e.g., search depth and branching factor). However, the relative
number of particles across the domains does reflect differences in the domains.

The automated selection with ε equal to 0.15, 0.1, 0.05, respectively solves 403,
407, and 389 of 450 instances, where the best manual selection solves 394. The
total respective average times for the automated selection are 1471.11, 1562.70,
and 1797.65 seconds, compared to 658.11 seconds for the best manual selection.

Table 5 shows the average number of particles chosen by each value of ε within
automated method compared with the manual method. As we expect, the number of
particles increases inversely with ε. In many cases, the number of selected particles
is very close to the best manually selected number of particles.

7 Related Work

Probabilistic planning has been a problem of interest over the last few decades, with
much activity in recent years. Much of the early work explored different search
space representations and search algorithms, which we summarize in the first sub-
section below. Only recently have planning graph techniques been applied to such
problems, first as a search substrate, and later as the basis for heuristics; we sum-
marize these in the second subsection. Lastly, we relate our approach to other work
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Problem ε = 0.15 ε = 0.1 ε = 0.05 Best N

Logistics p2-2-2 11.13 21.60 47.21 64

Logistics p4-2-2 60.27 95.08 194.94 64

Logistics p2-2-4 76.74 123.35 284.73 64

Grid 10x10 (0.8) 20.84 30.00 81.40 16

Grid 10x10 (0.5) 45.69 69.95 145.92 16

Grid 5x5 (0.8) 5.75 14.70 27.55 8

Grid 15x15 (0.8) 35.33 40.93 n.a. 16

Slippery Gripper 2.86 4.54 11.70 16

Sand Castle 3.07 4.86 11.04 16
Table 5
Summary of the average automated N found by ε = 0.15, 0.1, and 0.05, and the best

manual N .

that also use Monte Carlo in planning.

7.1 Alternative Approaches to Probabilistic Planning

The first approaches to probabilistic planning come from the operations research
community work on controlling Markov chains, i.e. Markov Decision Processes
[42]. The CPP problem, as we have stated it, can be solved with partially observable
Markov decision process (POMDP) algorithms, such as [14]. The work on CPplan
[25,26] shows that a POMDP algorithm [14] is inferior for solving CPP problems
with large state spaces (like Logistics and Grid). This disparity may be partly due
to the fact that the POMDP algorithms solve a more general problem by finding
plans for all possible initial belief states.

From an AI perspective, Buridan [30] is the first symbolic planner to solve CPP.
Buridan is a partial order casual link (POCL) planner that allows multiple support-
ers for an open condition, much like our relaxed plans in the McLUG. Unfortu-
nately, Buridan does not scale very well because it lacks effective search heuristics.

The previously mentioned CPplan planner improves upon the original bounded
length formulation for CPP used by MaxPlan [35]. Where CPplan is based on CSP,
MaxPlan uses a variation of satisfiability. Both planners rely on storing previously
computed plan suffixes to prune their search space. CPplan happens to use a supe-
rior representation and it has been shown to be more efficient for several problems.

In a similar formulation to that of CPplan, the recent Complan planner [24] im-
proves approaches to optimal bounded length CPP problems. Complan improves
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upon CPplan by removing the heavy memory requirements due to storing plan suf-
fixes. Similar to our approach, Complan computes a heuristic estimate of the plan
suffix, but unlike us, the heuristic gives an admissible over-estimate of the proba-
bility of goal satisfaction for a finite number of actions. While we do not provide
extensive empirical comparisons with Complan, the results presented in [24] show
that Complan takes on the order of hours to find solutions for larger instances of
the 10x10 Grid problem, where we take minutes. While Complan can find plans
that are high probability in fewer plan steps (because it is optimal), our heuristic
approach is competitive from the standpoint that planning time is vastly reduced.

7.2 Planning Graphs in Planning Under Uncertainty

Planning graphs are one of the more important data-structures used within the plan-
ning community [11]. The initial use as a search substrate has transitioned to ex-
tensive use in heuristic computation. Originally developed for classical planning,
they have been extended in a number of ways to handle uncertainty.

PGraphPlan [4] and CGP [44] are the first two planners to use generalizations
of GraphPlan [3] for planning under uncertainty. PGraphPlan is used for fully-
observable probabilistic planning (similar to Markov decision processes). The key
idea in PGraphPlan is to forward chain in the planning graph, using dynamic pro-
gramming, to find an optimal probabilistic plan for a given finite horizon. Al-
ternatively, TGraphPlan greedily back-chains in the planning graph to find a so-
lution that satisfies the goal, without guaranteeing optimality. CGP solves non-
observable (conformant) non-deterministic planning problems by constructing a
planning graph for each possible world.

One of the first works [6] to use planning graphs for heuristics, more specifically
pruning, was in Markov decision processes. By analyzing the propositions reach-
able in the PGraphPlan planning graph, it is possible to prune some states from a
given Markov decision process and improve any number of policy or value iteration
algorithms.

Guiding search with planning graph heuristics is a relatively recent line of work.
The simplest approach, embodied in Probapop [39], is to treat each outcome of
each action as a new deterministic action, and compute classical planning heuris-
tics. Probapop [39], which is built on top of Vhpop [48], guides the Buridan planner
with these heuristics. In theory, POCL planners are a nice framework for proba-
bilistic planning because it is easy to add actions to support a low probability con-
dition without backtracking (as may be necessary in state based search). In practice,
POCL planners can be hard to work with because it is often difficult to assess the
probability of a partially ordered plan. At the time of publication we have not made
extensive comparisons with Probapop, except on the Grid problem where it cannot
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find a solution.

The next planner to use planning graph heuristics, the Prottle planner [31], uses a
variation of PGraphPlan and temporal planning graphs for fully-observable prob-
abilistic temporal planning. In this planning graph, Prottle can explicitly reason
about actions with probabilistic outcomes by adding an outcome layer and defining
a cost propagation procedure. The authors do not extract relaxed plans, rather they
compute an upper bound on goal satisfaction probability.

Most similar to our approach, Domshlak and Hoffmann [16] use a relaxed plan
heuristic in the Probabilistic FF (PFF) planner to solve CPP. PFF uses a different
representation of the belief state space where it may never completely compute a
belief state. Instead, PFF uses a dynamic Bayesian network representation of the
plan and performs probabilistic inference with weighted CNFs. Because PFF rep-
resents belief states in this fashion, computing its heuristic involves a similar type
of reasoning in weighted CNFs. The heuristic computation is relaxed in the same
sense as a planning graph; conflicts between action effects are ignored and actions
execute in parallel. The reasoning is carried out in weighted CNFs. The heuristic
computation involves extra relaxations beyond those made by theMcLUG, such
as ignoring all but one antecedent of conditional effects. At the time of writing, the
PFF planner was not able to handle probabilistic effects, making empirical compar-
ison impossible.

7.3 Monte Carlo in Probabilistic Planning

Monte Carlo techniques have long played a significant role in all types of proba-
bilistic reasoning, and probabilistic planning is no different. To our knowledge our
approach is the first to use Monte Carlo in heuristic computation, but many have
used it within search algorithms and even to determine a representation.

RTDP [1] is a Monte Carlo search algorithm, used in recent work (e.g., Mausam and
Weld [36] and Bonet and Geffner [5]). RTDP performs random walks to evaluate
the state space, in contrast we use a deterministic search algorithm (albeit guided
by a stochastic heuristic).

The Pegasus planner [38] and MCPOMDP [46] use Monte Carlo in POMDP prob-
lems to help define a representation. In Pegasus, the approach samples several de-
terministic versions of a problem’s transition system, solves the resulting problems,
and uses the results to define an approximate policy for the original problem. The
MCPOMDP approach defines policies for large or continuous state spaces by gen-
erating reachable approximate belief states through Monte Carlo sampling of the
transition and observation functions. With the sampled belief states, MCPOMDP
uses policy iteration to define an approximate policy.
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8 Conclusion & Future Work

We have presented an approach called McLUG to integrate Monte Carlo simu-
lation into heuristic computation on planning graphs. TheMcLUG enables us to
quickly compute effective heuristics for conformant probabilistic planning. At a
broader level, our work shows one fruitful way of exploiting the recent success in
deterministic planning to scale stochastic planners.

While the heuristics are inadmissible, precluding guarantees on plan optimality,
we found empirically that the plan quality does not suffer tremendously. By using
the heuristics, our planner is able to far out-scale one of the currently best optimal
approaches to conformant probabilistic planning. Optimal approaches can some-
times improve the probability of goal satisfaction within the extra steps taken by
our plans, but in many domains the optimal planner cannot scale to find such plans.

TheMcLUG suggests a general technique for handling uncertain actions in plan-
ning graphs. A potential application of theMcLUG is in planning with uncertainty
about continuous quantities (e.g., the resource usage of an action) [8]. In such cases,
actions can have an infinite number of outcomes. Explicitly keeping track of pos-
sible worlds is out of the question, but sampling could be useful in reachability
heuristics.

We have also presented a domain-independent technique for automatically deter-
mining the number of particles to use in theMcLUG. The technique demonstrates
a successful integration of particle filtering methods with planning. In the future,
we hope to incorporate additional such approximation techniques to further scale
planning in stochastic environments. We intend to understand how we can more
fully integrate MC into heuristic computation, as there are numerous possibilities
for relaxation through randomization. One possibility is to sample the actions to
place in the planning graph to simulate splitting the planning graph [49]. More
importantly, we would like to use knowledge gained through search to refine our
sampling distributions for importance sampling. For instance, we may be able to
bias sampling of mutexes by learning the actions that are critical to the planning
task. Overall, randomization has played an important role in search [1,20], and we
have presented only a glimpse of its benefit in heuristic computation.
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